214 research outputs found

    On Computing Centroids According to the p-Norms of Hamming Distance Vectors

    Get PDF
    In this paper we consider the p-Norm Hamming Centroid problem which asks to determine whether some given strings have a centroid with a bound on the p-norm of its Hamming distances to the strings. Specifically, given a set S of strings and a real k, we consider the problem of determining whether there exists a string s^* with (sum_{s in S} d^{p}(s^*,s))^(1/p) <=k, where d(,) denotes the Hamming distance metric. This problem has important applications in data clustering and multi-winner committee elections, and is a generalization of the well-known polynomial-time solvable Consensus String (p=1) problem, as well as the NP-hard Closest String (p=infty) problem. Our main result shows that the problem is NP-hard for all fixed rational p > 1, closing the gap for all rational values of p between 1 and infty. Under standard complexity assumptions the reduction also implies that the problem has no 2^o(n+m)-time or 2^o(k^(p/(p+1)))-time algorithm, where m denotes the number of input strings and n denotes the length of each string, for any fixed p > 1. The first bound matches a straightforward brute-force algorithm. The second bound is tight in the sense that for each fixed epsilon > 0, we provide a 2^(k^(p/((p+1))+epsilon))-time algorithm. In the last part of the paper, we complement our hardness result by presenting a fixed-parameter algorithm and a factor-2 approximation algorithm for the problem

    Are there any nicely structured preference~profiles~nearby?

    Get PDF
    We investigate the problem of deciding whether a given preference profile is close to having a certain nice structure, as for instance single-peaked, single-caved, single-crossing, value-restricted, best-restricted, worst-restricted, medium-restricted, or group-separable profiles. We measure this distance by the number of voters or alternatives that have to be deleted to make the profile a nicely structured one. Our results classify the problem variants with respect to their computational complexity, and draw a clear line between computationally tractable (polynomial-time solvable) and computationally intractable (NP-hard) questions

    Parliamentary Voting Procedures: Agenda Control, Manipulation, and Uncertainty

    Full text link
    We study computational problems for two popular parliamentary voting procedures: the amendment procedure and the successive procedure. While finding successful manipulations or agenda controls is tractable for both procedures, our real-world experimental results indicate that most elections cannot be manipulated by a few voters and agenda control is typically impossible. If the voter preferences are incomplete, then finding which alternatives can possibly win is NP-hard for both procedures. Whilst deciding if an alternative necessarily wins is coNP-hard for the amendment procedure, it is polynomial-time solvable for the successive one
    • …
    corecore